
2.5.5. Derivation of the Fermi-Dirac distribution function   

To derive the Fermi-Dirac distribution function, we start from a series of possible energies, 
labeled Ei. At each energy, we can have gi possible states and the number of states that are 
occupied equals gifi, where fi is the probability of occupying a state at energy Ei. We also assume 
that the number of possible states is very large, so that the discrete nature of the states can be 
ignored. 

The number of possible ways - called configurations - to fit gi fi electrons in gi states, given the 
restriction that only one electron can occupy each state, equals: 
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This equation is obtained by numbering the individual states and exchanging the states rather 
than the electrons. This yields a total number of gi! possible configurations. However since the 
empty states are all identical, we need to divide by the number of permutations between the 
empty states, as all permutations cannot be distinguished from each other and can therefore only 
be counted once. In addition, all the filled states are indistinguishable from each other, so we 
need to divide also by all permutations between the filled states, namely gifi!. 

The number of possible ways to fit the electrons in the number of available states is called the 
multiplicity function. 

The multiplicity function for the whole system is the product of the multiplicity functions for 
each energy Ei: 
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(2.5.7) 

Using Stirling’s approximation#, one can eliminate the factorial signs, yielding: 
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The total number of electrons in the system equals N and the total energy of those N electrons 
equals U. These system parameters are related to the number of states at each energy, gi, and the 
probability of occupancy of each state, fi, by: 
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# See appendix 14. 



According to the basic assumption of statistical thermodynamics, all possible configurations are 
equally probable. The multiplicity function provides the number of configurations for a specific 
set of occupancy probabilities, fi. The multiplicity function sharply peaks at the thermal 
equilibrium distribution since this is the most likely distribution of the system and must therefore 
be associated with the largest number of - equally probable - configurations. The occupancy 
probability in thermal equilibrium is therefore obtained by finding the maximum of the 
multiplicity function, W, while keeping the total energy and the number of electrons constant. 

For convenience, we maximize the logarithm of the multiplicity function instead of the 
multiplicity function itself. According to the Lagrange method of undetermined multipliers, we 
must maximize the following function: 
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where a and b need to be determined. The maximum of the multiplicity function, W, is obtained 
from: 
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(2.5.12) 

which can be solved, yielding: 
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or 
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which can be written in the following form 
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with β = 1/b and EF = -a/b. The symbol EF was chosen since this constant has units of energy 
and will be the constant associated with this probability distribution.  

Taking the derivative of the total energy, one obtains: 
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Using the Lagrange equation, this can be rewritten as: 
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Any variation of the energies, Ei, can only be caused by a change in volume, so that the middle 
term can be linked to a volume variation dV.  

 
dNEdV

dV
dE

fgWddU F
i

i
ii +












+= ∑)(lnβ  

(2.5.18) 

Comparing this to the thermodynamic identity: 
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one finds that β  = kT and S = k lnW, where k is a constant that must be determined . The energy, 
EF, equals the energy associated with the particles, namely the electro-chemical potential, µ. 

The comparison also identifies the entropy, S, as being proportional to the logarithm of the 
multiplicity function, W. The proportionality constant, k, is known as Boltzmann’s constant. 

The Fermi-Dirac distribution function then becomes: 
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Note that this derivation can only truly be followed if one has prior knowledge of statistical 
thermodynamics. Those who are well versed in this field can quickly derive the Fermi-Dirac and 
other distribution functions using the Gibbs sum. A more complete description can be found in 
reference 8 listed in the bibliography at the end of Chapter 2. 


